Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of High Ener...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of High Energy Physics
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Old-minimal supergravity models of inflation

Authors: Takahiro Terada; Sergei V. Ketov; Sergei V. Ketov; Sergei V. Ketov;

Old-minimal supergravity models of inflation

Abstract

We study three types of the old-minimal higher-derivative supergravity theories extending the $f(R)$ gravity, towards their use for the inflationary model building in supergravity, by using both superfields and their field components. In the curved superspace all those theories are described in terms of a single chiral scalar curvature superfeld $\mathcal{R}$. Each of those theories can be dualized into a matter-coupled supergravity without higher derivatives. The first type is parametrized by a single non-holomorphic potential $N(\mathcal{R},\bar{\mathcal{R}})$, and gives rise to the dual matter-coupled supergravities with two dynamical chiral matter superfields having a no-scale K��hler potential. We find that a generic potential $N(\mathcal{R},\bar{\mathcal{R}})$ generates both the $(R+R^2)$ gravity and the non-minimal coupling of the propagating complex scalar field to the $R$, needed for the Starobinsky and Higgs inflation, respectively. We find the general conditions for the Starobinsky inflation and compute the inflaton mass. The second type is given by the chiral supergravity actions whose superfield Lagrangian $F(\mathcal{R},��({\bar{\mathcal R}}))$ also depends upon the chiral projection $��$ of the anti-chiral superfield ${\bar{\mathcal R}}$. We find that the actions of the second type always give rise to ghosts. We also revisit the $F(\mathcal{R})$ supergravity actions of the third type (without the $��$-dependence) with the reduced number of the extra physical degrees of freedom, comprising a single chiral matter superfeld with a no-scale K��hler potential. We confirm that the pure $F(\mathcal{R})$ supergravity is insufficient for realization of the Starobinsky inflation, though by the reason different from those proposed in the recent literature.

LaTeX, 24 pages, no pictures; Sections 3 and 4 expanded, references added, typos corrected

Keywords

High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Green
Published in a Diamond OA journal