<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract Positivity bounds coming from consistency of UV scattering amplitudes are not always sufficient to prove the weak gravity conjecture for theories beyond Einstein-Maxwell. Additional ingredients about the UV may be necessary to exclude those regions of parameter space which are naïvely in conflict with the predictions of the weak gravity conjecture. In this paper we explore the consequences of imposing additional symmetries inherited from the UV theory on higher-derivative operators for Einstein-Maxwell-dilaton-axion theory. Using black hole thermodynamics, for a preserved SL(2, ℝ) symmetry we find that the weak gravity conjecture then does follow from positivity bounds. For a preserved O(d, d; ℝ) symmetry we find a simple condition on the two Wilson coefficients which ensures the positivity of corrections to the charge-to-mass ratio and that follows from the null energy condition alone. We find that imposing supersymmetry on top of either of these symmetries gives corrections which vanish identically, as expected for BPS states.
High Energy Physics - Theory, Black Holes, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, Black Holes in String Theory, Supersymmetry and Duality, String Duality
High Energy Physics - Theory, Black Holes, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, Black Holes in String Theory, Supersymmetry and Duality, String Duality
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |