
Abstract We study the backreaction effect of a large axion field excursion on the saxion partner residing in the same $$ \mathcal{N} $$ N = 1 multiplet. Such configurations are relevant in attempts to realize axion monodromy inflation in string compactifications. We work in the complex structure moduli sector of Calabi-Yau fourfold compactifications of F-theory with four-form fluxes, which covers many of the known Type II orientifold flux compactifications. Noting that axions can only arise near the boundary of the moduli space, the powerful results of asymptotic Hodge theory provide an ideal set of tools to draw general conclusions without the need to focus on specific geometric examples. We find that the boundary structure engraves a remarkable pattern in all possible scalar potentials generated by background fluxes. By studying the Newton polygons of the extremization conditions of all allowed scalar potentials and realizing the backreaction effects as Puiseux expansions, we find that this pattern forces a universal backreaction behavior of the large axion field on its saxion partner.
High Energy Physics - Theory, Nuclear and High Energy Physics, High Energy Physics - Theory (hep-th), Flux compactifications, Nuclear and particle physics. Atomic energy. Radioactivity, Superstring Vacua, FOS: Physical sciences, QC770-798, Cosmology of Theories beyond the SM
High Energy Physics - Theory, Nuclear and High Energy Physics, High Energy Physics - Theory (hep-th), Flux compactifications, Nuclear and particle physics. Atomic energy. Radioactivity, Superstring Vacua, FOS: Physical sciences, QC770-798, Cosmology of Theories beyond the SM
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
