<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10651/56575 , 10138/314647
Abstract We construct a family of holographic duals to anisotropic states in a strongly coupled gauge theory. On the field theory side the anisotropy is generated by giving a vacuum expectation value to a dimension three operator. We obtain our gravity duals by considering the geometry corresponding to the intersection of D3- and D5- branes along 2+1 dimensions. Our backgrounds are supersymmetric and solve the fully backreacted equations of motion of ten-dimensional supergravity with smeared D5-brane sources. In all cases the geometry flows to AdS 5 × 𝕊5 in the UV, signaling an isotropic UV fixed point of the dual field theory. In the IR, depending on the parameters of the solution, we find two possible behaviors: an isotropic fixed point or a geometry with anisotropic Lifshitz-like scaling symmetry. We study several properties of the solutions, including the entanglement entropy of strips. We show that any natural extension of existing c-functions will display non-monotonic behavior, conforming with the presence of new degrees of freedom only at intermediate regions between the boundary and the origin of the holographic dual.
High Energy Physics - Theory, FOS: Physical sciences, QC770-798, AdS-CFT Correspondence, Gauge-gravity correspondence, Physical sciences, Holography and condensed matter physics (AdS/CMT), High Energy Physics - Theory (hep-th), D-branes, Nuclear and particle physics. Atomic energy. Radioactivity, CMT), Holography and condensed matter physics (AdS
High Energy Physics - Theory, FOS: Physical sciences, QC770-798, AdS-CFT Correspondence, Gauge-gravity correspondence, Physical sciences, Holography and condensed matter physics (AdS/CMT), High Energy Physics - Theory (hep-th), D-branes, Nuclear and particle physics. Atomic energy. Radioactivity, CMT), Holography and condensed matter physics (AdS
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |