
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11380/1177352
We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled N=4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as $(1-v^2)^��$ with ��=1/2, in contrast with the isotropic result ��=1/4.
39 pages, 26 figures; v2: minor changes, added references
High Energy Physics - Theory, Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Gauge-gravity correspondence; Holography and quark-gluon plasmas;
High Energy Physics - Theory, Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Gauge-gravity correspondence; Holography and quark-gluon plasmas;
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 112 | |
downloads | 36 |