
doi: 10.1007/bfb0121248
The Lemke-Howson algorithm for bimatrix games provides both an elementary proof of the existence of equilibrium points and an efficient computational method for finding at least one equilibrium point. The first half of this paper presents a geometrical view of the algorithm that makes its operation especially easy to visualize. Several illustrations are given, including Wilson’s example of “inaccessible” equilibrium points. The second half presents an orientation theory for the equilibrium points of (nondegenerate) bimatrix games and the Lemke-Howson paths that interconnect them; in particular, it is shown that there is always one more “negative” than “positive” equilibrium point.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
