Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://doi.org/10.1007/bfb012...
Part of book or chapter of book . 1982 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Conjugate gradient methods for linearly constrained nonlinear programming

Authors: Shanno, D. F.; Marsten, R. E.;

Conjugate gradient methods for linearly constrained nonlinear programming

Abstract

This paper considers the problem of minimizing a nonlinear function subject to linear constraints. The method adopted is the reduced gradient method as described by Murtagh and Saunders, with a conjugate gradient method due to Shanno used for unconstrained minimization on manifolds. It is shown how to preserve past information on search directions when a basis change occurs and when a superbasic variable is dropped. Numerical results show a substantial improvement over the reported results of Murtagh and Saunders when conjugate gradient methods are used.

Related Organizations
Keywords

Large-scale problems in mathematical programming, sparse matrix, reduced gradient method, Numerical mathematical programming methods, Nonlinear programming, search direction determination, Methods of reduced gradient type, linearly constrained nonlinear programming, large- scale systems, superbasic variable, basis change, simplex method, computational results

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!