
The development of millimeter and submillimeter spectroscopy has allowed astronomers to probe the cold, dense component of the interstellar medium. This medium, primarily composed of gas in molecular form, is gravitationally bound into relatively distinct clouds that are sites of star formation within our Galaxy. The most ubiquitous tracers of these molecular clouds are the rotational transitions of carbon monoxide. Observations of CO emission have been commonly used to estimate the size, temperature, mass, and density of molecular clouds; in addition, the spectral line profiles can be used to study the internal dynamics of these clouds. Although the sound speed within molecular clouds is only about 0.2 km s−1, observed CO line widths are more typically 1 to 5 km s−1. Thus, the internal dynamics of molecular clouds are characterized by supersonic gas motions whose nature is poorly understood.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
