
Canonical quantization may be approached from several different starting points. The usual approaches involve promotion of c-numbers to q-numbers, or path integral constructs, each of which generally succeeds only in Cartesian coordinates. All quantization schemes that lead to Hilbert space vectors and Weyl operators---even those that eschew Cartesian coordinates---implicitly contain a metric on a flat phase space. This feature is demonstrated by studying the classical and quantum ``aggregations'', namely, the set of all facts and properties resident in all classical and quantum theories, respectively. Metrical quantization is an approach that elevates the flat phase space metric inherent in any canonical quantization to the level of a postulate. Far from being an unwanted structure, the flat phase space metric carries essential physical information. It is shown how the metric, when employed within a continuous-time regularization scheme, gives rise to an unambiguous quantization procedure that automatically leads to a canonical coherent state representation. Although attention in this paper is confined to canonical quantization we note that alternative, nonflat metrics may also be used, and they generally give rise to qualitatively different, noncanonical quantization schemes.
13 pages, LaTeX, no figures, to appear in Born X Proceedings
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
