
The basic integrator processes of quantum stochastic calculus, namely, creation, conservation, and annihilation, are introduced in the Hilbert space of square integrable Brownian functionals. Stochastic integrals with respect to these processes and a quantum Ito’s formula are described. As an application two examples of quantum stochastic differential equations are discussed. A continuous time version of Stinespring’s theorem on completely positive maps in C*-algebras is exploited to formulate the notion of a quantum Markov process and indicate how classical Markov processes are woven into the fabric of the Schodinger-Heisenberg dynamics of quantum theory.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
