Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrating constraints with an object-oriented language

Authors: Bjørn N. Freeman-Benson; Alan Borning;

Integrating constraints with an object-oriented language

Abstract

Constraints are declarative statements of relations among elements of the language's computational domain, e.g., integers, booleans, strings, and other objects. Orthogonally, the tools of object-oriented programming, including encapsulation, inheritance, and dynamic message binding, provide important mechanisms for extending a language's domain. Although the integration of constraints and objects seems obvious and natural, one basic obstacle stands in the way: objects provide a new, larger, computational domain, which the language's embedded constraint solver must accommodate. In this paper we list some goals and non-goals for an integration of constraints and object oriented language features, outline previous approaches to this integration, and describe the scheme we use in Kaleidoscope'91, our object-oriented constraint imperative programming language. Kaleidoscope'91 uses a class-based object model, multi-methods, and constraint constructors to integrate cleanly the encapsulation and abstraction of a state-of-the-art object-oriented language with the declarative aspects of constraints.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!