Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MPG.PuRearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Report . 1997
Data sources: MPG.PuRe
https://doi.org/10.1007/bfb002...
Part of book or chapter of book . 1998 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
MPG.PuRe
Conference object . 1998
Data sources: MPG.PuRe
versions View all 4 versions
addClaim

On Batcher's merge sorts as parallel sorting algorithms

Authors: Rüb, C.;

On Batcher's merge sorts as parallel sorting algorithms

Abstract

We examine the average running times of Batcher's bitonic merge and Batcher's odd-even merge when they are used as parallel merging algorithms. It has been shown previously that the running time of odd-even merge can be upper bounded by a function of the maximal rank difference for elements in the two input sequences. Here we give an almost matching lower bound for odd-even merge as well as a similar upper bound for (a special version of) bitonic merge. From this follows that the average running time of odd-even merge (bitonic merge) is Θ((n/p)(1+log(1+p 2/n))) (O((n/p)(1+log(1+p 2/n))), resp.) where n is the size of the input and p is the number of processors. Using these results we then show that the average running times of odd-even merge sort and bitonic merge sort are O((n/p) (log n + (log(1 +p2/n))2)), that is, the two algorithms are optimal on the average if \(n \geqslant p^2 /2^{\sqrt {\log p} }\).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green