
doi: 10.1007/bfb0015235
Neural networks have attracted much attention lately as a powerful tool of automatic learning. Of particular interest is the class of recurrent networks which allow for loops and cycles and thus give rise to dynamical systems, to flexible behavior, and to computation. This paper reviews the recent findings that mathematically quantify the computational power and dynamic capabilities of recurrent neural networks. The appeal of the network as a possible standard model of analog computation also will be discussed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
