Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Biologica Hunga...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Biologica Hungarica
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Synthesis and accumulation of poly(3-hydroxybutyric acid) by Rhizobium sp.

Authors: A, Manna; S, Pal; A K, Paul;

Synthesis and accumulation of poly(3-hydroxybutyric acid) by Rhizobium sp.

Abstract

Forty-two Rhizobium strains obtained from different culture collections were evaluated quantitatively for poly(3-hydroxy-butyric acid) [PHB] production in shake flask culture. The majority of the strains produced the maximum amount of PHB during the late exponential or stationary phase of growth. Synthesis and accumulation of PHB in different species of Rhizobium were found to vary between 1-38% of their dry biomass. Growth and PHB production by the Rhizobium strain TAL-640 were greatly influenced by the C-source and D-mannitol was fundamental to both processes. The identity and purity of PHB isolated from TAL-640 have also been confirmed by UV-, IR- and 1H-NMR spectroscopic analyses.

Related Organizations
Keywords

Species Specificity, Spectrophotometry, Infrared, Polyesters, Hydroxybutyrates, Spectrophotometry, Ultraviolet, Bradyrhizobium, Nuclear Magnetic Resonance, Biomolecular, Rhizobium

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!