Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Digital I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Digital Imaging
Article . 1990 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Three-dimensional image display in medicine

Authors: N J, Mankovich; D R, Robertson; A M, Cheeseman;

Three-dimensional image display in medicine

Abstract

This article is a tutorial on the methods used to create three-dimensional (3-D) images for use in displaying patient anatomy. This new view into anatomy has developed over the last 10 years from the need of surgeons, radiation therapists, and radiologists to integrate the many images resulting from the recent growth in tomographic imaging including computed tomography (CT) and magnetic resonance imaging (MRI). CT and MRI studies result in 30 to 100 images. 3-D imaging processes and integrates this image data volume and extracts more meaningful, derivative images via multiplanar reconstruction (MPR), shaded surface processing, or volumetric processing. MPR reslices the image volume to produce novel views of patient anatomy while retaining the image voxel intensities. Realistic shaded surface display of 3-D objects can involve extensive processing of the images to create computer representations of objects rendered into a displayable 3-D scene. Volumetric imaging combines the voxel processing of MPR with the techniques of tissue classification and surface shading to produce novel projections of the image data volume that allow automated creation of 3-D scenes without recourse to the complexities of object delineation. As the ultimate 3-D display, recent advances in computer-aided design (CAD) and computer-aided manufacturing (CAM) allow the fabrication of physical models of anatomy using computer-controlled milling machines. New technology that actually builds the model layer by layer from a liquid plastic offers the possibility of complete models with intact internal anatomy. The growth in 3-D is certain as hardware and software costs decrease and medical professionals find further applications for this technology.

Related Organizations
Keywords

Image Processing, Computer-Assisted, Humans, Tomography, X-Ray Computed, Magnetic Resonance Imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Average
bronze