
We investigate $2d$ sigma-models with a $2+N$ dimensional Minkowski signature target space metric and Killing symmetry, specifically supersymmetrized, and see under which conditions they might lead to corresponding exact string vacua. It appears that the issue relies heavily on the properties of the vector $M_��$, a reparametrization term, which needs to possess a definite form for the Weyl invariance to be satisfied. We give, in the $n = 1$ supersymmetric case, two non-renormalization theorems from which we can relate the $u$ component of $M_��$ to the $��^G_{uu}$ function. We work out this $(u,u)$ component of the $��^G$ function and find a non-vanishing contribution at four loops. Therefore, it turns out that at order $��^{\prime 4}$, there are in general non-vanishing contributions to $M_u$ that prevent us from deducing superstring vacua in closed form.
9 pages, latex, CERN-TH.6946/93
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
