
doi: 10.1007/bf02756791
For natural numbers \(n\) and \(d\), let \(K_n(\Delta_c \leq d)\) denote a complete graph of order \(n\) whose edges are colored so that no vertex belongs to more than \(d\) edges of the same color, and where \(\Delta_c\) is the maximal degree in the subgraph formed by the edges of color \(c\). D. E. Daykin proved that if \(d=2\) and \(n \geq 6\), then every such graph contains an alternating hamiltonian cycle (i.e. a spanning cycle whose adjacent edges have different colors). The authors have extended this as follows. Theorem: If \(69d
Extremal problems in graph theory, Coloring of graphs and hypergraphs
Extremal problems in graph theory, Coloring of graphs and hypergraphs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 54 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
