Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Neurobiolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Neurobiology
Article . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Inhibitory glutamate receptor channels

Authors: T A, Cleland;

Inhibitory glutamate receptor channels

Abstract

Inhibitory glutamate receptors (IGluRs) are a family of ion channel proteins closely related to ionotropic glycine and gamma-aminobutyric acid (GABA) receptors; They are gated directly by glutamate; the open channel is permeable to chloride and sometimes potassium. Physiologically and pharmacologically, IGluRs most closely resemble GABA receptors; they are picrotoxin-sensitive and sometimes crossdesensitized by GABA. However, the amino acid sequences of cloned IGluRs are most similar to those of glycine receptors. Ibotenic acid, a conformationally restricted glutamate analog closely related to muscimol, activates all IGluRs. Quisqualate is not an IGluR agonist except among pulmonate molluscs and for a unique multiagonist receptor in the crayfish Austropotamobius torrentium. Other excitatory amino acid agonists are generally ineffective. Avermectins have several effects on IGluRs, depending on concentration: potentiation, direct gating, and blockade, both reversible and irreversible. Since IGluRs have only been clearly described in protostomes and pseudocoelomates, these effects may mediate the powerful antihelminthic and insecticidal action of avermectins, while explaining their low toxicity to mammals. IGluRs mediate synaptic inhibition in neurons and are expressed extrajunctionally in striated muscles. The presence of IGluRs in a neuron or muscle is independent of the presence or absence of excitatory glutamate receptors or GABA receptors in the cell. Generally, extrajunctional IGluRs in muscle have a higher sensitivity to glutamate than do neuronal synaptic receptors. Some extrajunctional receptors are sensitive in the range of circulating plasma glutamate levels, suggesting a role for IGluRs in regulating muscle excitability The divergence of the IGlu/GABA/Gly/ACh receptor superfamily in protostomes could become a powerful model system for adaptive molecular evolution. Physiologically and pharmacologically, protostome receptors are considerably more diverse than their vertebrate counterparts. Antagonist profiles are only loosely correlated with agonist profiles (e.g., curare-sensitive GABA receptors, bicuculline-sensitive AChRs), and pharmacologically identical receptors may be either excitatory or inhibitory, and permeable to different ions. The assumption that agonist sensitivity reliably connotes discrete, homologous receptor families is contraindicated. Protostome ionotropic receptors are highly diverse and straightforward to assay; they provide an excellent system in which to study and integrate fundamental questions in molecular evolution and adaptation.

Related Organizations
Keywords

Neurons, Potassium Channels, Molecular Sequence Data, Neurotoxins, Gene Expression, Glutamic Acid, Nerve Tissue Proteins, Invertebrates, Evolution, Molecular, Chlorides, Receptors, Glutamate, Chloride Channels, Excitatory Amino Acid Agonists, Potassium, Animals, Humans, Amino Acid Sequence, Excitatory Amino Acid Antagonists, Ion Channel Gating, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    131
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
131
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!