Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Il Nuovo Cimento Aarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Il Nuovo Cimento A
Article . 1975 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Density fluctuations in nuclear matter

Authors: CALOGERO F; RAGNISCO, Orlando; PALUMBO F.;

Density fluctuations in nuclear matter

Abstract

Variational computations of the binding energy per particle for various models of nuclear matter are reported. The main purpose is to compare the results corresponding to a «semi-crystallic» structure characterized by correlated density fluctuations of the four spin-isospin nucleon types, with those corresponding to the standard «Fermi gas» homogeneous and isotropic nuclear-matter structure. It is found that, in some cases, the semicrystallic configuration yields more overall attraction (actually less overall repulsion) than the Fermi-gas case, already at (mean) nuclear densities equal to the central density of ordinary (heavy) nuclei. This effect becomes more pronounced at higher (mean) nuclear densities; it can, in most cases, be attributed, at least in part, to the tensor component of the nuclear interaction, that averages to zero in the Fermi-gas case, and yields instead an attractive contribution in configurations with appropriately correlated density fluctuations of the four spin-isospin nucleon states. All computations are based on realistic one-boson exchange nucleon-nucleon potentials. The correlations associated with the strongly repulsive character of the nucleon-nucleon interaction at short range have not been properly accounted for. The results of this paper have therefore no immediate phenomenological implications; whether the effect displayed here is preserved when the repulsive core of the nucleon-nucleon interaction is properly taken into account (both in the computations with and without density fluctuations) remains an open question.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!