
doi: 10.1007/bf02705720
Thermal degradation of nitrogen (N)-containing recycled plastics (styrene-acrylonitrile (SAN), acrylonitrilebutadiene-styrene (ABS)) was carried out in a stirred-batch reactor at 300–400 ‡C under nitrogen stream. The degradation oil began to be generated over 300 ‡C. Recycled SAN plastic was converted to oil with 91.3 wt% yield at 380 ‡C, while only 70.9 wt% of recycled ABS plastics was converted to oil at the same temperature and both oils contained about the same 3.7 wt% nitrogen as an elemental basis. Rate of oil formation from the thermal degradation of SAN was much higher than that of ABS, but showed a similar degradation pattern in terms of chemical composition. In oil products, aromatic contents obtained at 360 ‡C were 70 wt% for SAN and 79 wt% for ABS, respectively, and decreased to 59 wt% and 57 wt% at 380 ‡C with increasing degradation temperature. Dominant product of both degradation oils was styrene, and the following was ethylbenzene for ABS, but none in case of SAN. Both oils contained the N-containing plastic additives that give rise to a confusion for the identification of authentic N-containing degradation products.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
