Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metallurgical Transa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Metallurgical Transactions A
Article . 1980 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recrystallization of austenite

Authors: L. J. Cuddy; J. J. Bauwin; J. C. Raley;

Recrystallization of austenite

Abstract

A laboratory simulation of hot-rolling schedules, which employs a sequence of high-speed compressions performed over a range of temperatures, was used to determine the effects of composition and processing variables on the state of the austenite at several points in the hot-rolling procedure. The type and quantity of carbide and/or nitride forming elements (Nb(Cb), V, Al) in the steels were varied to produce precipitates at various points in the hot-working range of temperatures. Time-temperature-deformation schedules were designed around schedules currently used in the hot-re-duction of plate steels; variations were introduced to determine the effects of processing variables on the development of the austenite structures. At various points in the deformation schedule, specimens were quenched out and changes in the austenite grain structure were examined. Changes in the volume and aspect ratio of the prior-austenite grains were used as measures of the degree of austenite recrystallization. At temperatures above the precipitation-start temperature, light reductions (< 10 pct) caused grain coarsening. Coarsening could be eliminated by increasing the reduction per pass, decreasing the rolling temperatures, or increasing the concentration of carbide or nitrideforming elements to raise the precipitation-start temperature. It is clear from these results that attempts to study structural changes that occur during plate rolling by using a few high-reduction passes may produce erroneous results.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!