Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Biomedical...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Biomedical Engineering
Article . 1985 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Oxygen-dependent mechanisms in cerebral autoregulation

Authors: H A, Kontos; E P, Wei;

Oxygen-dependent mechanisms in cerebral autoregulation

Abstract

Autoregulatory adjustments in the caliber of cerebral arterioles were studied in anesthetized cats equipped with cranial windows for the direct observation of the pial microcirculation. Increased venous pressure caused slight, but consistent, arteriolar dilation, at normal and at reduced arterial blood pressure and irrespective of whether or not intracranial pressure was kept constant or allowed to increase. Arterial hypotension caused arteriolar dilation which was inhibited partially by perfusion of the space under the cranial window with artificial CSF equilibrated with high concentrations of oxygen. This vasodilation was inhibited to a greater extent by perfusion of the space under the cranial window with fluorocarbon FC-80, equilibrated with high concentrations of oxygen. CSF or fluorocarbon equilibrated with nitrogen did not influence the vasodilation in response to arterial hypotension. The response to increased venous pressure was converted to vasoconstriction when fluorocarbon equilibrated with high concentrations of oxygen was flowing under the cranial window. The vasodilation in response to arterial hypotension was inhibited by topical application of adenosine deaminase. The results show that both metabolic and myogenic mechanisms play a role in cerebral arteriolar autoregulation. Under normal conditions, the metabolic mechanisms predominate. The presence of the myogenic mechanisms may be unmasked by preventing the operation of the metabolic mechanisms. The major metabolic mechanism seems to be dependent on changes in PO2 within the brain with secondary release of adenosine.

Related Organizations
Keywords

Adenosine, Biomedical Engineering, Cerebral Arteries, Perfusion, Vasodilation, Arterioles, Oxygen Consumption, Regional Blood Flow, Cerebrovascular Circulation, Cats, Animals, Homeostasis, Hypotension, Venous Pressure

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!