Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Microbio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Microbiology
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Archives of Microbiology
Article . 1995 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Cell-surface charge and cell-surface hydrophobicity of collagen-bindingAeromonas andVibrio strains

Authors: F, Ascencio; G, Johansson; T, Wadström;

Cell-surface charge and cell-surface hydrophobicity of collagen-bindingAeromonas andVibrio strains

Abstract

Partitioning in aqueous polymer two-phase systems of polyethylene glycol and dextran was used to detect and compare cell-surface charge and cell-surface hydrophobicity of Aeromonas hydrophila, A. caviae, A. sobria, Vibrio cholerae, and V. anguillarum strains. These strains have cell-surface components that bound either native or thermally denatured type I collagen (i.e., a mixture of the alpha1+alpha2 chains) and gelatin immobilized on latex beads. Our goals were: (1) to compare the possible relationship between the cell-surface charge/hydrophobicity and binding to collagen and (2) to evaluate the influence of the culture media on the expression of surface properties. There was no apparent relationship between cell-surface charge, cell-surface hydrophobicity, and binding to collagen. The expression of surface properties was dependent on the culture media. There was no relationship between binding to immobilized collagen and binding to soluble 125I-labeled collagen. Particle-agglutination reactivity differed when using various collagen-coated microbead preparations. There were general differences in the particle-agglutination reactivity when collagen-coated latex beads were prepared using different coating procedures. The negative charge and hydrophobicity of the various collagen-coated microbead preparations were also studied by partitioning in the two-phase system of polyethylene glycol and dextran. Under these conditions, the alpha1+alpha2 collagen-chain mixture covalently immobilized on carboxy-modified latex beads was less hydrophobic and negatively charged than gelatin and native collagen immobilized on the same kind of latex beads. For latex beads passively coated with collagen preparations, the alpha1+alpha2 collagen-chain mixture was more hydrophobic than gelatin and native collagen. We suggest that for screening collagen-binding among Vibrio and Aeromonas strains, a reliable and sensitive particle-agglutination assay should consider the collagen preparation and the coating procedure for the immobilization of collagen onto the latex beads. In this regard, carboxy-modified latex beads coated with an alpha1+alpha2 collagen-chain mixture gave the best results.

Related Organizations
Keywords

Agglutination, Surface Properties, Cell Membrane, Fishes, Culture Media, Animals, Gelatin, Humans, Aeromonas, Collagen, Water Microbiology, Vibrio

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!