Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of Mathemat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Bulletin of Mathematical Biophysics
Article . 1954 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bulletin of Mathematical Biology
Article . 1955 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Topology and life: In search of general mathematical principles in biology and sociology

Authors: N. Rashevsky;

Topology and life: In search of general mathematical principles in biology and sociology

Abstract

Mathematical biology has hitherto emphasized the quantitative, metric aspects of the physical manifestations of life, but has neglected the relational or positional aspects, which are of paramount importance in biology. Although, for example, the processes of locomotion, ingestion, and digestion in a human are much more complex than in a protozoan, the general relations between these processes are the same in all organisms. To a set of very complicated digestive functions of a higher animal there correspond a few simple functions in a protozoan. In other words, the more complicated processes in higher organisms can be mapped on the simpler corresponding processes in the lower ones. If any scientific study of this aspect of biology is to be possible at all, there must exist some regularity in such mappings. We are, therefore, led to the following principle: If the relations between various biological functions of an organism are represented geometrically in an appropriate topological space or by an appropriate topological complex, then the spaces or complexes representing different organisms must be obtainable by a proper transformation from one or very fewprimordial spaces or complexes. The appropriate representation of the relations between the different biological functions of an organism appears to be a one-dimensional complex, or graph, which represents the “organization chart” of the organism. The problem then is to find a proper transformation which derives from this graph the graphs of all possible higher organisms. Both a primordial graph and a transformation are suggested and discussed. Theorems are derived which show that the basic principle of mapping and the transformation have a predictive value and are verifiable experimentally. These considerations are extended to relations within animal and human societies and thus indicate the reason for the similarities between some aspects of societies and organisms. It is finally suggested that the relation between physics and biology may lie on a different plane from the one hitherto considered. While physical phenomena are the manifestations of the metric properties of the four-dimensional universe, biological phenomena may perhaps reflect some local topological properties of that universe.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    158
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
158
Top 10%
Top 0.1%
Top 10%
bronze