
pmid: 8575940
The gas nitric oxide is now recognized as an important signalling molecule that is synthesized from L-arginine by the enzyme nitric oxide synthase. This enzyme can be localized by different methods, including immunocytochemistry and the histochemical reaction for NADPH diaphorase. It has been demonstrated in various vertebrate cells and tissues, and recently several studies dealing with the production of nitric oxide in invertebrates have been published. Diploblastic animals, flatworms and nematodes seem to lack NADPH diaphorase activity but it has been found in the rest of the phyla studied. The most frequently reported sites for the production of nitric oxide are the central and peripheral nervous systems and, in primitive molluscs, the muscle cells. In insects, it has also been described in the Malpighian tubules. The roles of nitric oxide in invertebrates are closely related to the physiological actions described in vertebrates, namely, neurotransmission, defence, and salt and water balance. The recent cloning of the first nitric oxide synthase from an invertebrate source could open interesting avenues for further studies.
NADPH Dehydrogenase, Animals, Nitric Oxide Synthase, Nitric Oxide, Immunohistochemistry, Invertebrates
NADPH Dehydrogenase, Animals, Nitric Oxide Synthase, Nitric Oxide, Immunohistochemistry, Invertebrates
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
