Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Servicio de Difusión...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical & Biological Engineering & Computing
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

Propagation velocity measurement: Autocorrelation technique applied to the electromyogram

Authors: Spinelli, Enrique Mario; Felice, Carmelo José; Mayosky, Miguel Angel; Politti, J. C.; Valentinuzzi, Max E.;

Propagation velocity measurement: Autocorrelation technique applied to the electromyogram

Abstract

Muscle fibre conduction velocity is an important measurement in electrophysiology, both in the research laboratory and in clinical practice. It is usually measured by placing electrodes spaced at known distances and estimating the transit time of the action potential. The problem, common to all methods, is the estimation of this time delay. Several measurement procedures, in the time and frequency domains, have been proposed. Time-domain strategies usually require two acquisition channels, whereas some frequency-domain methods can be implemented using a single one. The method described operates in the time domain, making use of the autocorrelation function of the difference signal obtained from two needle electrodes and only one acquisition channel. Experimental results were obtained from the electromyogram of two biceps muscles (two adult male subjects, nine records each) under voluntary contraction, yielding an average of 3.58 m s(-1) (SD=0.04 m s(-1)) and 3.37m s(-1) (SD=0.03 m s(-1)), respectively. Several tests showed that the proposed method works properly with electromyogram records as short as 0.3 s.

Country
Argentina
Keywords

Adult, Male, Electromyography, Biología, Muscle conduction velocity, Muscle Fibers, Skeletal, Neural Conduction, Action Potentials, Signal Processing, Computer-Assisted, Humans, Electrotecnia, correlation function, Needle electromyography

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green