
doi: 10.1007/bf02337560
pmid: 8229094
An important, yet seemingly unattainable, goal in structural molecular biology is to be able to predict the native three-dimensional structure of a protein entirely from its amino acid sequence. Prediction methods based on rigorous energy calculations have not yet been successful, and best results have been obtained from homology modelling and statistical secondary structure prediction. Homology modelling is limited to cases where significant sequence similarity is shared between a protein of known structure and the unknown. Secondary structure prediction methods are not only unreliable, but also do not offer any obvious route to the full tertiary structure. Recently, methods have been developed whereby entire protein folds are recognized from sequence, even where little or no sequence similarity is shared between the proteins under consideration. In this paper we review the current methods, including our own, and in particular offer a historical background to their development. In addition, we also discuss the future of these methods and outline the developments under investigation in our laboratory.
Models, Molecular, Protein Folding, Sequence Homology, Amino Acid, Molecular Sequence Data, Computer Simulation, Amino Acid Sequence, Templates, Genetic, Protein Structure, Tertiary
Models, Molecular, Protein Folding, Sequence Homology, Amino Acid, Molecular Sequence Data, Computer Simulation, Amino Acid Sequence, Templates, Genetic, Protein Structure, Tertiary
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 87 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
