
pmid: 12218352
Until recently, the approach to understanding the molecular basis of complex syndromes such as cancer, coronary artery disease, and diabetes was to study the behavior of individual genes. However, it is generally recognized that expression of a number of genes is coordinated both spatially and temporally and that this coordination changes during the development and progression of diseases. Newly developed functional genomic approaches, such as serial analysis of gene expression (SAGE) and DNA microarrays have enabled researchers to determine the expression pattern of thousands of genes simultaneously. One attractive feature of SAGE compared to microarrays is its ability to quantify gene expression without prior sequence information or information about genes that are thought to be expressed. SAGE has been successfully applied to the gene expression profiling of a number of human diseases. In this review, we will first discuss SAGE technique and contrast it to microarray. We will then highlight new biological insights that have emerged from its application to the study of human diseases.
Gene Expression Profiling, Genetic Diseases, Inborn, Gene Expression, Humans, Oligonucleotide Array Sequence Analysis
Gene Expression Profiling, Genetic Diseases, Inborn, Gene Expression, Humans, Oligonucleotide Array Sequence Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
