
The well known method proposed by Givens [1] reduces a full symmetric matrix A = (a ik ) of order n by a sequence of appropriately chosen elementary orthogonal transformations (in the following called Jacobi rotations) to triput diagonal form. This is achieved by (n - 1)(n - 2)/2 Jacobi rotations, each of which annihilates one of the elements a ik with |i - k|>1. If this process is applied in one of its usual ways to a symmetric band matrix A = (a ik ) of order n and with the band width m>1, i.e. with $${a_{ik}} = 0{\rm{ for all }}i{\rm{ and }}k{\rm{ with |}}i - k{\rm{| >}}m,$$ (1) it would of course produce a tridiagonal matrix, too. But the rotations generate immediately nonvanishing elements outside the original band that show the tendency to fill out the matrix. Thus it seems that little profit with respect to computational and storage requirements may be taken from the property of the given matrix A to be of band type.
numerical analysis
numerical analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 80 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
