
doi: 10.1007/bf02088322
pmid: 7712513
1. Tetrodotoxin (TTX) has been widely used as a chemical tool for blocking Na+ channels. However, reports are accumulating that some Na+ channels are resistant to TTX in various tissues and in different animal species. Studying the sensitivity of Na+ channels to TTX may provide us with an insight into the evolution of Na+ channels. 2. Na+ channels present in TTX-carrying animals such as pufferfish and some types of shellfish, frogs, salamanders, octopuses, etc., are resistant to TTX. 3. Denervation converts TTX-sensitive Na+ channels to TTX-resistant ones in skeletal muscle cells, i.e., reverting-back phenomenon. Also, undifferentiated skeletal muscle cells contain TTX-resistant Na+ channels. Cardiac muscle cells and some types of smooth muscle cells are considerably insensitive to TTX. 4. TTX-resistant Na+ channels have been found in cell bodies of many peripheral nervous system (PNS) neurons in both immature and mature animals. However, TTX-resistant Na+ channels have been reported in only a few types of central nervous system (CNS). Axons of PNS and CNS neurons are sensitive to TTX. However, some glial cells have TTX-resistant Na+ channels. 5. Properties of TTX-sensitive and TTX-resistant Na+ channels are different. Like Ca2+ channels, TTX-resistant Na+ channels can be blocked by inorganic (Co2+, Mn2+, Ni2+, Cd2+, Zn2+, La3+) and organic (D-600) Ca2+ channel blockers. Usually, TTX-resistant Na+ channels show smaller single-channel conductance, slower kinetics, and a more positive current-voltage relation than TTX-sensitive ones. 6. Molecular aspects of the TTX-resistant Na+ channel have been described. The structure of the channel has been revealed, and changing its amino acid(s) alters the sensitivity of the Na+ channel to TTX. 7. TTX-sensitive Na+ channels seem to be used preferentially in differentiated cells and in higher animals instead of TTX-resistant Na+ channels for rapid and effective processing of information. 8. Possible evolution courses for Na+ and Ca2+ channels are discussed with regard to ontogenesis and phylogenesis.
Neurons, Muscles, Tetrodotoxin, Calcium Channel Blockers, Biological Evolution, Sodium Channels, Embryonic and Fetal Development, Kinetics, Animals, Neuroglia
Neurons, Muscles, Tetrodotoxin, Calcium Channel Blockers, Biological Evolution, Sodium Channels, Embryonic and Fetal Development, Kinetics, Animals, Neuroglia
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 81 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
