
Antibiotics taken up into gram-negative bacteria face two major diffusion barriers, the outer and cytoplasmic membranes. Of these, the former has been most studied and is discussed in detail here. Evidence from antibiotic MIC studies on porin-deficient mutants compared with their porin-sufficient parent strains has provided strong support for the proposal that some antibiotics, particularly beta-lactams, pass across the outer membrane through the water-filled channels of a class of proteins called porins. Nevertheless substantial evidence has accumulated for the importance of non-porin pathways of antibiotic uptake across the outer membranes of gram-negative bacteria. Examples discussed include the uptake of polycationic antibiotics via the self-promoted pathway, the uptake of hydrophobic antibiotics in some bacterial species and in mutants of others via the hydrophobic pathway, and the possible importance of poorly understood non-porin pathways of uptake of a variety of antibiotics. Other potential barriers to diffusion, including the cytoplasmic membrane, are briefly discussed.
Cell Membrane, Gram-Negative Bacteria, Porins, Anti-Bacterial Agents, Bacterial Outer Membrane Proteins
Cell Membrane, Gram-Negative Bacteria, Porins, Anti-Bacterial Agents, Bacterial Outer Membrane Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 183 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
