Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Clinical Microbiology & Infectious Diseases
Article . 1988 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 1989 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 1989 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

Antibiotic uptake into gram-negative bacteria

Authors: R E, Hancock; A, Bell;

Antibiotic uptake into gram-negative bacteria

Abstract

Antibiotics taken up into gram-negative bacteria face two major diffusion barriers, the outer and cytoplasmic membranes. Of these, the former has been most studied and is discussed in detail here. Evidence from antibiotic MIC studies on porin-deficient mutants compared with their porin-sufficient parent strains has provided strong support for the proposal that some antibiotics, particularly beta-lactams, pass across the outer membrane through the water-filled channels of a class of proteins called porins. Nevertheless substantial evidence has accumulated for the importance of non-porin pathways of antibiotic uptake across the outer membranes of gram-negative bacteria. Examples discussed include the uptake of polycationic antibiotics via the self-promoted pathway, the uptake of hydrophobic antibiotics in some bacterial species and in mutants of others via the hydrophobic pathway, and the possible importance of poorly understood non-porin pathways of uptake of a variety of antibiotics. Other potential barriers to diffusion, including the cytoplasmic membrane, are briefly discussed.

Related Organizations
Keywords

Cell Membrane, Gram-Negative Bacteria, Porins, Anti-Bacterial Agents, Bacterial Outer Membrane Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    183
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
183
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!