
doi: 10.1007/bf01939702
pmid: 2193827
The factors involved in the regulation of biological membrane fusion and models proposed for the molecular mechanism of biomembrane fusion are reviewed. The results obtained in model systems are critically discussed in the light of the known properties of biomembranes and characteristics of biomembrane fusion. Biological membrane fusion is a local-point event; extremely fast, non-leaky, and under strict control. Fusion follows on a local and most probably protein-modulated destabilization, and a transition of the interacting membranes from a bilayer to a non-bilayer lipid structure. The potential role of type II non-bilayer preferring lipids and of proteins in the local destabilization of the membranes is evaluated. Proteins are not only responsible for the mutual recognition of the fusion partners, but are most likely also to be involved in the initiation of biomembrane fusion, by locally producing or activating fusogens, or by acting as fusogens.
Cell Membrane, Lipid Bilayers, Membrane Fusion, Models, Biological
Cell Membrane, Lipid Bilayers, Membrane Fusion, Models, Biological
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 78 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
