
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>We investigate how the introduction of cells oscillating periodically affects the behaviour of a suspension of Dictyostelium discoideum amoebae undergoing chaotic oscillations of cyclic AMP. The analysis of a model indicates that a tiny proportion of periodic cells suffices to transform chaos into periodic oscillations in such suspensions. A similar result is obtained by forcing the aperiodic oscillations by a small-amplitude, periodic input of cyclic AMP. The results provide an explanation for the observation of regular oscillations in suspensions of a putatively chaotic mutant of Dictyostelium discoideum. More generally, the results show how chaos in biological systems may disappear through the coupling with periodic oscillations.
Periodicity, chaos, Dictyostelium discoideum, coupled oscillators, nonlinear dynamics, biological rhythms, cAMP oscillations, Cyclic AMP, Animals, Dictyostelium, Biologie, Mathematics, Signal Transduction
Periodicity, chaos, Dictyostelium discoideum, coupled oscillators, nonlinear dynamics, biological rhythms, cAMP oscillations, Cyclic AMP, Animals, Dictyostelium, Biologie, Mathematics, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
