Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular and Molecul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular and Molecular Life Sciences
Article . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Suppression of chaos by periodic oscillations in a model for cyclic AMP signalling inDictyostelium cells

Authors: Li, Yue-Xian; Halloy, José; Martiel, Jean Louis; Wurster, Bernd; Goldbeter, Albert;

Suppression of chaos by periodic oscillations in a model for cyclic AMP signalling inDictyostelium cells

Abstract

We investigate how the introduction of cells oscillating periodically affects the behaviour of a suspension of Dictyostelium discoideum amoebae undergoing chaotic oscillations of cyclic AMP. The analysis of a model indicates that a tiny proportion of periodic cells suffices to transform chaos into periodic oscillations in such suspensions. A similar result is obtained by forcing the aperiodic oscillations by a small-amplitude, periodic input of cyclic AMP. The results provide an explanation for the observation of regular oscillations in suspensions of a putatively chaotic mutant of Dictyostelium discoideum. More generally, the results show how chaos in biological systems may disappear through the coupling with periodic oscillations.

Country
Belgium
Keywords

Periodicity, chaos, Dictyostelium discoideum, coupled oscillators, nonlinear dynamics, biological rhythms, cAMP oscillations, Cyclic AMP, Animals, Dictyostelium, Biologie, Mathematics, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?