
doi: 10.1007/bf01875445
pmid: 28313571
Computer simulations were used to assess the influence of palmate leaf morphology, decussate phyllotaxy, and the elastic moduli of petioles on the capacity of turgid and wilted twigs ofAesculus hippocastanum to intercept direct solar radiation. Leaf size, morphology, orientation, and the Young's and shear moduli (E and G) of petioles were measured and related to leaf position on 8 twigs whose cut ends were placed in water ("turgid" twigs) and 8 twigs dried for 8 h at room temperature ("wilted" twigs). Petioles mechanically behaved as elastic cantilevered beams; the loads required to shear petioles at their base from twigs were correlated with the cross-sectional areas of phyllopodia but not with petiole length or tissue volume. Empirically determined morphometric and biomechanical data were used to construct "average" turgid and wilted twigs. The diurnal capacity to intercept direct sunlight for each was simulated for vertically oriented twigs for 15 h of daylight, 40° N latitude. The daily integrated irradiance (DII) of the wilted twig was roughly 3% less than that of the otherwise comparable twig bearing turgid leaves. Simulations indicated that the orientation of turgid leaves did not maximize DII. More decumbent (wilted) petioles increased DII by as much as 4%. Reduction in the girth, E, or G of petioles, or an increase in petiole length or the surface area of laminae (with attending increase in laminae weight), increased petiolar deflections and DII. Thus, the mechanical design of petioles ofA. hippocastanum was found not to be "economical" in terms of investing biomass for maximum light interception.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
