Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oecologiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Petiole mechanics, light interception by Lamina, and “Economy in Design”

Authors: Karl J, Niklas;

Petiole mechanics, light interception by Lamina, and “Economy in Design”

Abstract

Computer simulations were used to assess the influence of palmate leaf morphology, decussate phyllotaxy, and the elastic moduli of petioles on the capacity of turgid and wilted twigs ofAesculus hippocastanum to intercept direct solar radiation. Leaf size, morphology, orientation, and the Young's and shear moduli (E and G) of petioles were measured and related to leaf position on 8 twigs whose cut ends were placed in water ("turgid" twigs) and 8 twigs dried for 8 h at room temperature ("wilted" twigs). Petioles mechanically behaved as elastic cantilevered beams; the loads required to shear petioles at their base from twigs were correlated with the cross-sectional areas of phyllopodia but not with petiole length or tissue volume. Empirically determined morphometric and biomechanical data were used to construct "average" turgid and wilted twigs. The diurnal capacity to intercept direct sunlight for each was simulated for vertically oriented twigs for 15 h of daylight, 40° N latitude. The daily integrated irradiance (DII) of the wilted twig was roughly 3% less than that of the otherwise comparable twig bearing turgid leaves. Simulations indicated that the orientation of turgid leaves did not maximize DII. More decumbent (wilted) petioles increased DII by as much as 4%. Reduction in the girth, E, or G of petioles, or an increase in petiole length or the surface area of laminae (with attending increase in laminae weight), increased petiolar deflections and DII. Thus, the mechanical design of petioles ofA. hippocastanum was found not to be "economical" in terms of investing biomass for maximum light interception.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!