Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Membr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Membrane Biology
Article . 1978 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Interactions between a membrane sialoglycoprotein and planar lipid bilayers

Authors: M T, Tosteson;

Interactions between a membrane sialoglycoprotein and planar lipid bilayers

Abstract

Bilayer membranes formed from lipids dissolved in decane were exposed to glycophorin, a sialoglycoprotein which had been extracted from human red cell membranes. The interaction with the bilayer produced an increase in the steady state electrical conductance of the membrane proportional to the amount added. Fluctuations in membrane current when the electrical potential difference was constant were observed concommitantly with this increase in membrane conductance. The minimum size of the fluctuations corresponds to a conductance of 10−10 mho. The increase in conductance as well as the current fluctuations persisted after extensive washout of the chamber containing the protein (cisside). Subsequent addition of lectins (wheat germ agglutinin and phytohemoagglutinin) to the cis-side produced rupture of the membranes, whilst these hemoagglutinins added to the trans-side failed to produce an effect. Measurements of changes in surface potential using K+ nonactin as a probe indicated that glycophorin induces a negative surface charge. At high protein concentrations, the magnitude of the induced surface potential became independent of glycophorin concentration. The maximum number of charges introduced onto the membrane under these conditions was 1.4×105/μm2. Cis (but not trans)-side addition of neuraminidase abolished these charges, indicating that they can be ascribed to the sialic acid residues that the protein bears. These results suggest that glycophorin incorporates into bilayer membranes with its N-terminal end (where the sialic acid and carbohydrates are located) facing the cis-side. Spectrin reversibly lowered the glycophorin-induced membrane conductance when added to the trans-side. Cis-side additions failed to produce an effect. Trypsin present on the trans-side irreversibly lowered the membrane conductance. These results indicate that parts of the glycophorin molecule, probably the C-terminal end, are accessible to reagents in the solution bathing the trans-side of the membrane. Thus glycophorin spans the planar bilayer in much the same way as it spans the red cell membrane.

Related Organizations
Keywords

Sialoglycoproteins, Erythrocyte Membrane, Neuraminidase, Spectrin, Membrane Potentials, Membrane Lipids, Lectins, Animals, Humans, Trypsin, Glycophorins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!