Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Osteoporosis Interna...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Osteoporosis International
Article . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry

Authors: B. Lees; J. C. Stevenson;

An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry

Abstract

Dual-photon absorptiometry (DPA) is a well-established procedure for measuring bone mineral density (BMD). Recently, dual-energy X-ray absorptiometry (DXA) has become available, which has the ability to measure BMD both regionally and in the total body (TB). We have evaluated the in vivo and in vitro precision of a DXA instrument and compared it with a DPA instrument with similar software characteristics. The short-term precision of BMD measurements using DXA was assessed in 65 postmenopausal women who had duplicate scans performed, with repositioning between scans. Precision was 0.9% in the lumbar spine and 1.4% in the femoral neck. The midterm precision of DXA was compared with DPA by scanning 10 volunteers a mean of four times over 24 weeks, on both instruments. The precision of the bone mineral content (BMC) and area measurements was significantly better (P less than 0.05) with DXA than with DPA. Long-term in vitro precision was assessed by scanning an aluminium spine phantom over 42 weeks, and a cadaveric sample over 52 weeks, on both instruments. Precision was similar using the aluminium phantom, but was significantly improved (P less than 0.001) when using DXA for scanning the cadaveric sample. Highly significant correlations (all P less than 0.001) of BMD, BMC and area measurements were observed when 70 volunteers were scanned on both instruments. However, there was a systematic difference in BMD values between the instruments. The precision of TB composition measurements assessed in 16 volunteers, over a 16-week period, were TB BMD 0.65%, TB lean tissue 1.47%, and TB fat tissue 2.73%.(ABSTRACT TRUNCATED AT 250 WORDS)

Keywords

Adult, Male, Absorptiometry, Photon, Bone Density, Evaluation Studies as Topic, Body Composition, Humans, Reproducibility of Results, Female, Diagnosis, Computer-Assisted, Middle Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?