
doi: 10.1007/bf01608824
An operationally meaningful symmetric function defined on pairs of states of an arbitrary physical system is constructed and is shown to coincide with the usual “transition probability” in the special case of systems admitting a quantum-mechanical description. It can be used to define a metric in the set of physical states. Conceivable applications to the analysis of certain aspects of Quantum Mechanics and to its possible modifications are mentioned.
81.60
81.60
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
