Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Polymer R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Polymer Research
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Studies on the flexural modulus of structural foams

Authors: Tzong-Ming Yeh; Jiann-Shing Wu;

Studies on the flexural modulus of structural foams

Abstract

An investigation based on I-Beam models was undertaken in this paper for extending knowledge regarding the flexural modulus of structural foam. The applicability of five I-Beams models (I-Beam A, B, C, D and E) including a newly developed one (I-Beam E) were investigated in this work. The square law model was used to predict Young's modulus of uniform density foam, which was subsequently utilized for the calculation of the I-Beam models. I-Beam A, B and E were observed from the configuration analysls of each I-Beam to be the more suitable models for predicting the flexural modulus of the structural foams having either an integral skin or a skin with limited residual bubbles, among which I-Beam E is considered to be better than I-Beam B and A. The comparison of the experimental and theoretical values of the flexural modulus of the structural foams molded with gas counter pressure structural foam (CPSF) and low pressure structural foam (LPSF) molding methods also confirmed that the newly developed I-Beam E is the most adequate model for predicting the flexural modulus of structural foams having either an integral skin or a skin with few residual bubbles. I-Beam B and A were also demonstrated to be in good agreement with the experimental data.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!