Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archives of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Archives of Virology
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 1991
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Virology
Article . 1991 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hepatitis C virus

Authors: Plagemann, P. G. W.;

Hepatitis C virus

Abstract

HepCV is the major cause of NANB PT hepatitis and is also implicated as the cause in a large proportion of sporadic cases of NANBH. Chronic infection with HepCV has also been linked to the development of hepatocellular carcinoma. Chimpanzees and marmosets are the only animals found to be experimentally infectable and the virus has not been propagated in any cell culture system. HepCV is an enveloped virus with a diameter of 30-60 nm and a 10-kb positive-stranded RNA genome. Its genome organization resembles that of the flaviviruses and pestiviruses. A 5'-untranslated segment of 341 nucleotides precedes a continuous ORF of 9030/9033 nucleotides which is followed by a 54 nucleotides long 3'-non-coding segment. Further work is required to resolve the question of whether the genomic RNA possesses a 3'-poly(U) or poly(A) tail. The genome also carries an internal poly(A) segment towards the 5'-end of its ORF. Genomic RNA is probably translated into a single polyprotein of 3010/3011 amino acids which is processed into functional proteins. The viral proteins have not been identified, but on the basis of the predicted amino acid sequences, hydrophobicity plots, location of potential glycosylation sites and similarities of these properties to those of pesti- and flaviviruses, the following genome organization has been predicted. The predicted viral structural proteins, a nucleocapsid protein and two envelope glycoproteins are located at the amino-terminal end of the polyprotein. They are followed by a highly hydrophobic protein and proteins that exhibit proteinase, helicase and replicase domains and thus are probably involved in RNA replication and protein processing. The replicase domain is located close to the carboxy terminus of the polyprotein. Although the overall nucleotide and amino acid homologies between HepCV and pestiviruses are low, a number of similarities exist that point to a closer ancestral relationship to the latter than the flaviviruses. First, the 5'-untranslated segment of the HepCV genome resembles that of the pestivirus genomes in size and presence of several short ORFs and it contains several segments with high nucleotide homology. Second, the two putative envelope glycoproteins of HepCV resemble two of the three putative envelope glycoproteins of the pestiviruses. Because its genome organization and predicted virion structure closely resemble those of the flaviviruses and pestiviruses, HepCV has been proposed to be placed in the family Flaviviridae.(ABSTRACT TRUNCATED AT 400 WORDS)

Related Organizations
Keywords

Base Sequence, Molecular Sequence Data, Genome, Viral, Hepacivirus, Hepatitis C, Brief Review, Viral Proteins, Animals, Humans, RNA, Viral, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Average
Top 10%
Top 10%
Green
hybrid