
doi: 10.1007/bf01281057
The microtubule cytoskeleton and cytoplasmic organization ofAllomyces macrogynus during zoosporogenesis was studied using light and electron microscopy. Indirect immunofluorescence methods revealed that the microtubule cytoskeleton progressed through three distinct stages of cytoplasmic distribution during zoospore development. During the first 10 minutes of zoosporogenesis, nuclei were strictly located in the periphery of the cytoplasm, and their associated centrosomes were positioned immediately adjacent to the plasma membrane. Microtubules emanated from centrosomes into the surrounding cytoplasm. Within 20 to 30 min after the induction of zoosporangial cleavage, nuclei migrated to new positions throughout the sporangial cytoplasm and microtubule arrays were primarily organized at and emanated from nuclear surfaces. During the final stage of zoosporogenesis, nuclear envelope-associated microtubules were not observed. Instead, primary organization of cytoplasmic microtubules returned to centrosomes (i.e., basal bodies) and flagella formation was evident. The MPM-2 antibody, which recognizes phosphorylated epitopes of several proteins associated with microtubule nucleation, stained centrosome regions throughout zoosporogenesis but did not stain nuclear envelopes.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
