Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PROTOPLASMAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PROTOPLASMA
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTOPLASMA
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
PROTOPLASMA
Article . 2002
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autoreproductive cells and plant meristem construction: The case of the tomato cap meristem

Authors: Barlow, PW; Lück, HB; Lück, J;

Autoreproductive cells and plant meristem construction: The case of the tomato cap meristem

Abstract

Root apical meristems are composed of two zones in which either formative or proliferative cell divisions occur. Within the formative zone, autoreproductive initial cells (a-cells) occupy distinctive locations. By means of graph-L-systems, the behavior of one such type of a-cells has been investigated, with particular reference to root caps within the developing primordia of lateral roots of Lycopersicon esculentum cultivated in vitro. Here, the a-cells constitute the "protoderm initials", cells which are found also in the root cap of many angiosperm species. A set of cuboidal (i.e., six-sided) a-cells develops early in the ontogeny of a lateral-root primordium. Then, according to both anatomical observations and theoretical simulations obtained by the application of graph-L-systems, sequential production of descendents from each a-cell leads to the formation of a new autoreproductive cell (a), a cap columella initial (c), and two mother cells (e and f) whose respective descendents differentiate as root epidermis and cap flank cells. In this graph-L-system, there is specification of the location of sister cells with respect to the three orthogonal directions of a cuboidal. In the early stage of root cap formation, only a few rounds of these formative cell divisions by each a-cell and its four types of descendents are required to provide the basic set of cells necessary for full cap development. After the lateral root emerges from the parent root, there may be a temporary cessation of the formative divisions of the a-cells which give rise to columella initials. Columella production is then supported entirely by its own independent set of autoreproductive c-initials. At the same time, division of the autoreproductive protoderm initial cell is directed towards maintaining the cap flank and the epidermal cell files. The regulation of the types of formative division by the a-cell may be represented by means of a division counter which may be specific for a given species.

Keywords

570, Solanum lycopersicum, Plant Root Cap, Models, Biological, Algorithms, Cell Division, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Green
bronze