Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Wireless Networksarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wireless Networks
Article . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Probability models of microcell coverage

Authors: Mathilde Benveniste;

Probability models of microcell coverage

Abstract

Once a subscriber unit served by a microcell initiates a call, it must remain in the coverage area of the microcell long enough to complete call set up and hand-off functions. This restricts the minimum size attainable by a microcell. This paper derives the relationship between the microcell size, the call processing time, and the probability that a subscriber unit, initiating a call, will remain inside the microcell coverage area for at least the duration of call processing. Under simple assumptions, time spent in the coverage area of the microcell before and after call initiation have the same cumulative density function, which is derived in this paper for traffic conditions encountered in highway and metropolitan settings.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!