
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1007/bf01228432
This paper investigates the equinoctial orbit elements for the two-body problem, showing that the associated matrices are free from singularities for zero eccentricities and zero and ninety degree inclinations. The matrix of the partial derivatives of the position and velocity vectors with respect to the orbit elements is given explicitly, together with the matrix of inverse partial derivatives, in order to facilitate construction of the matrizant (state transition matrix) corresponding to these elements. The Lagrange and Poisson bracket matrices are also given. The application of the equinoctial orbit elements to general and special perturbations is discussed.
Orbital mechanics
Orbital mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 180 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
