Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pediatric Nephrologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pediatric Nephrology
Article . 1993 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dopaminergic defect in hypertension

Authors: Robin A. Felder; Pedro A. Jose; Gilbert M. Eisner;

Dopaminergic defect in hypertension

Abstract

Reverse genetics and the candidate gene approach have been utilized to identify the genetic defect(s) in hypertension. We have proposed the dopamine receptor gene as one candidate in the pathogenesis of hypertension. Because some forms of hypertension are sodium dependent or aggravated by sodium loading and because dopamine is important in aiding the organism to eliminate "excess" sodium, an abnormality in the renal dopaminergic system may be responsible for the sodium retention in hypertension. Both human and animal models of hypertension are associated with renal dopamine production and/or post first messenger defects. The Dahl salt-sensitive rat, which has a decreased ability to generate renal dopamine, and the spontaneously hypertensive rat (SHR), which has no such limitation, have a defective coupling of a D1 receptor to a G protein/adenylyl cyclase complex. This coupling defect is: (1) genetic, since it precedes the onset of hypertension and co-segregates with the hypertensive phenotype, (2) receptor specific, since it is not shared by other humoral agents, and (3) organ and nephron segment selective, since it occurs in proximal tubules but not in cortical collecting ducts or the brain striatum. A consequence of the defective dopamine receptor/adenylyl cyclase coupling in the SHR is a decreased ability of D1 agonists to inhibit Na+/H+ exchange activity. A resistance to the natriuretic effect of dopamine and D1 agonists in the SHR is due mainly to decreased cyclic AMP production, although with maturation a post cyclic AMP defect is acquired. Radioligand binding studies suggest a "loss" of the high-affinity D1 binding site in the SHR.(ABSTRACT TRUNCATED AT 250 WORDS)

Keywords

Dopamine, Hypertension, Animals, Humans, Receptors, Dopamine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!