Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Super...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Supercomputing
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Incomplete hypercubes: Algorithms and embeddings

Authors: Alfred J. Boals; Ajay K. Gupta 0001; Naveed A. Sherwani;

Incomplete hypercubes: Algorithms and embeddings

Abstract

The hypercube, though a popular and versatile architecture, has a major drawback in that its size must be a power of two. In order to alleviate this drawback, Katseff [1988] defined theincomplete hypercube, which allows a hypercube-like architecture to be defined for any number of nodes. In this paper we generalize this definition and introduce the namecomposite hypercube. The main result of our work shows that these incomplete architectures can be used effectively and without the size penalty. In particular, we show how to efficiently implement Fully Normal Algorithms on composite hypercubes. Development of these types of algorithms on composite hypercubes allows us to efficiently execute several algorithms concurrently on a complete hypercube. We also show that many host architectures, such as binary trees, arrays and butterflies, can be optimally embedded into composite hypercubes. These results imply that algorithms originally designed for any such host can be optimally mapped to composite hypercubes. Finally, we show that composite hypercubes exhibit many graph theoretic properties that are common with complete hypercubes. We also present results on efficient representations of composite hypercubes within a complete hypercube. These results are crucial in task allocation and job scheduling problems.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!