Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Materials...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Materials Science
Article . 1993 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Creep of silicon nitride-titanium nitride composites

Authors: Yu. G. Gogotsi; G. Grathwohl;

Creep of silicon nitride-titanium nitride composites

Abstract

The effect of particulate TiN additions (0–50 wt%) on creep behaviour of hot-pressed (5 wt%Y2O3 + 2 wt%Al2O3)-doped silicon nitride (HPSN)-based ceramics was studied. Creep was measured using a four-point bending fixture in air at 1100–1340 °C. At 1100 °C, very low creep rates of HPSN with 0–30 wt% TiN are observed at nominal stresses up to 160 MPa. At 1200 °C the creep rate is slightly higher, and at 1300 °C the creep rate is increased by three orders of magnitude compared to 1100 °C and rupture occurs after a few hours under creep conditions. It was established that the formation of a TiN skeleton could detrimentally affect the creep behaviour of HPSN. An increase in TiN content leads to higher creep rates and to shorter rupture times of the samples. Activation energies of 500–1000 kJ mol−1 in the temperature range of 1100–1340 °C at 100 MPa, and stress exponentsn⩽4 in the stress range 100–160 MPa at 1130–1200 °C were calculated. Possible creep mechanisms and the effect of oxidation on creep are discussed.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!