Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Nuclear Medicine
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Nitroimidazoles and imaging hypoxia

Authors: A, Nunn; K, Linder; H W, Strauss;

Nitroimidazoles and imaging hypoxia

Abstract

Decreased tissue oxygen tension is a component of many diseases. Although hypoxia can be secondary to a low inspired pO2 or a variety of lung disorders, the commonest cause is ischemia due to an oxygen demand greater than the local oxygen supply. In tumors, low tissue pO2 is often observed, most often due to a blood supply inadequate to meet the tumor's demands. Hypoxic tumor tissue is associated with increased resistance to therapy. In the heart tissue hypoxia is often observed in persistent low-flow states, such as hibernating myocardium. In patients with stroke, hypoxia has been associated with the penumbral region, where an intervention could preserve function. Despite the potential importance of oxygen levels in tissue, difficulty in making this measurement in vivo has limited its role in clinical decision making. A class of compounds known to undergo different intracellular metabolism depending on the availability of oxygen in tissue, the nitroimidazoles, have been advocated for imaging hypoxic tissue. When a nitroimidazole enters a viable cell the molecule undergoes a single electron reduction, to form a potentially reactive species. In the presence of normal oxygen levels the molecule is immediately reoxidized. This futile shuttling takes place for some time, before the molecule diffuses out of the cell. In hypoxic tissue the low oxygen concentration is not able to effectively compete to reoxidize the molecule and further reduction appears to take place, culminating in the association of the reduced nitroimidazole with various intracellular components. The association is not irreversible, since these agents clear from hypoxic tissue over time. Initial development of nitroimidazoles for in vivo imaging used radiohalogenated derivatives of misonidazole, such as fluoromisonidazole, some of which have recently been employed in patients. Two major problems with fluoromisonidazole are its relatively low concentration within the lesion and the need to wait several hours to permit clearance of the agent from the normoxic background tissue (contrast between lesion and background typically < 2:1 at about 90 min after injection). Even with high-resolution positron emission tomographic imaging, this combination of circumstances makes successful evaluation of hypoxic lesions a challenge.(ABSTRACT TRUNCATED AT 400 WORDS)

Related Organizations
Keywords

Radioisotopes, Nitroimidazoles, Animals, Humans, Hypoxia, Radionuclide Imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    370
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
370
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!