
The field of photobiology is concerned with the interactions between light and living matter. For Bacteria this interaction serves three recognisable physiological functions: provision of energy, protection against excess radiation and signalling (for motility and gene expression). The chemical structure of the primary light-absorbing components in biology (the chromophores of photoactive proteins) is surprisingly simple: tetrapyrroles, polyenes and derivatised aromats are the most abundant ones. The same is true for the photochemistry that is catalysed by these chromophores: this is limited to light-induced exciton- or electron-transfer and photoisomerization. The apoproteins surrounding the chromophores provide them with the required specificity to function in various aspects of photosynthesis, photorepair, photoprotection and photosignalling. Particularly in photosynthesis several of these processes have been resolved in great detail, for others at best only a physiological description can be given. In this contribution we discuss selected examples from various parts of the field of photobiology of Bacteria. Most examples have been taken from the purple bacteria and the cyanobacteria, with special emphasis on recently characterised signalling photoreceptors in Ectothiorhodospira halophila and in Fremyella diplosiphon.
Bacteria, DNA Repair, Light, Photochemistry, Gene Expression Regulation, Bacterial, Cyanobacteria, Carotenoids, Photobiology, Electron Transport, Photosynthesis, Energy Metabolism
Bacteria, DNA Repair, Light, Photochemistry, Gene Expression Regulation, Bacterial, Cyanobacteria, Carotenoids, Photobiology, Electron Transport, Photosynthesis, Energy Metabolism
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
