
doi: 10.1007/bf00865253
pmid: 24242905
We have examined the environments of the three phenol rotamers about the C(α)-C(β) bond in tyrosinamide by fluorescence quenching. Steady-state acrylamide quenching yields a nonlinear stern-Volmer plot. With three distinct emitting species and no other information about the system, it is impossible to analyze the data due to the number of variables which have to be determined. We therefore reduced the number of variables by independently determining the fractional intensity and dynamic quenching constant for each rotamer through time-resolved fluorescence quenching studies. These parameters were then used to analyze the steady-state data for any contribution of static quenching. We conclude that the nonlinear Stern-Volmer plot for the quenching of tyrosinamide by acrylamide is a consequence of each rotamer having a distinct dynamic quenching constant and the presence of static quenching. The static quenching can be represented by either the sphere-of-action model involving two of the three rotamers or the ground-state complex model involving all three rotamers.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
