Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fluoresce...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fluorescence
Article . 1991 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Rotamer-specific fluorescence quenching in tyrosinamide: Dynamic and static interactions

Authors: P B, Contino; W R, Laws;

Rotamer-specific fluorescence quenching in tyrosinamide: Dynamic and static interactions

Abstract

We have examined the environments of the three phenol rotamers about the C(α)-C(β) bond in tyrosinamide by fluorescence quenching. Steady-state acrylamide quenching yields a nonlinear stern-Volmer plot. With three distinct emitting species and no other information about the system, it is impossible to analyze the data due to the number of variables which have to be determined. We therefore reduced the number of variables by independently determining the fractional intensity and dynamic quenching constant for each rotamer through time-resolved fluorescence quenching studies. These parameters were then used to analyze the steady-state data for any contribution of static quenching. We conclude that the nonlinear Stern-Volmer plot for the quenching of tyrosinamide by acrylamide is a consequence of each rotamer having a distinct dynamic quenching constant and the presence of static quenching. The static quenching can be represented by either the sphere-of-action model involving two of the three rotamers or the ground-state complex model involving all three rotamers.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!