Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pediatric Nephrologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pediatric Nephrology
Article . 1991 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pediatric Nephrology
Article . 1991 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expressing glomerular filtration rate in children

Authors: Malcolm A. Holliday; Barry A. Kogan; Amira Al-Dahwi; David C. Heilbron;

Expressing glomerular filtration rate in children

Abstract

We have reviewed the studies that provide the current standards of reference for glomerular filtration rate (GFR) in normal children from 14 days to 12 years of postnatal age. These standards currently are presented as ml/min per 1.73 m2, i.e., adjusted to average adult body surface area. Children from birth to 1 year of age have adjusted values below the adult range, making comparisons of observed to reference values difficult. Currently, there is no accepted way of obtaining reference values that vary smoothly with age. An analysis of the absolute GFR values in normal children taken from published studies led to an equation that estimates average GFR in relation to weight and term-adjusted age from -2 months (7 months gestational age) to 12 years in children at least 14 days post delivery. When these data are transformed to percentage of normal (% nl) for age and weight (i.e., percentage of the estimated average), it is possible to describe approximate apparent lower limits of normal GFR as is now done for adults and older children. For children with loss of renal mass, GFR expressed as % nl for age and weight provides a convenient standardization which has several useful applications. First, results expressed as % nl for children of different ages, particularly under 1 year of age, can be combined with those of older children for summary purposes. Second, the course of GFR measured serially in children is more appropriately described using this method for expressing GFR. Reporting GFR in absolute values is also useful, particularly in patients whose body mass is significantly distorted or whose absolute GFR is low.

Related Organizations
Keywords

Age Factors, Infant, Newborn, Humans, Infant, Glomerular Filtration Rate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 1%
Average
bronze